


Abstract

Nature has evolved an abundance of valuable and inspirational examples.
It has even given birth to intelligent species. The concept of intelligence
is valuable to us and deserves further exploration. The ‘brain processes’
underlying intelligence are still little understood. Luckily, complex and of-
ten complicated phenomena have underlying principles that are not very
complicated by themselves. In this thesis, (1) the principles for this evolu-
tionary process were clarified and (2) evaluated for artificial application. (3)
Finally we address whether intelligence might emerge. This thesis provides
an overview of AI from biology to artificial implementation.

Ad 1) General principles thought to be essential are evolution, evolvable
structures (substrates) and interaction with a rich and challenging envi-
ronment. Specifically, neuronal structures have been essential to natural
evolution of intelligence.

Ad 2) Both neuronal structures and evolution have been implemented
artificially and have been combined, referred to as Artificial Neural Net-
works (ANNs) and Evolutionary Algorithms (EAs). Two experimental im-
plementations are discussed and related to the theory. Evolution of virtual
creatures’ shapes to ANNs and EA and an artificial developing humanoid
‘baby robot’ to developmental psychology. Implementation challenges and
issues are discussed, scaling and interconnection problems. Possible solu-
tions are use of FPGA, aVLSI, neuromorphic engineering, optic-holographic
and molecular computing devices.

Ad 3) Do the implementations have what is needed for intelligence to
emerge? Will intelligence eventually arise? A theoretical computer science
perspective and the view of Alastair Channon are presented. Gödel’s incom-
pleteness theorem and Searle’s ‘Chinese room’ experiment are introduced.
Channon argues that since we’re unable to specify precisely what intelli-
gence is, we should not expect it to emerge when using the fitness function
in the traditional sense. Instead, Channon and others propose a co-evolution
based approach.
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Chapter 1

Introduction

1.1 Background

Understanding the workings of nature is a fundamental pursuit of most
sciences. Thanks to its vast diversity, it has offered us many examples and
baffled us with its ingenuity.

It is striking to see that mechanisms that are in essence quite simple, can
give birth to intelligent beings like ourselves. While the basic behavior and
function of a single neuron or the process of evolution can be understood
with relative ease, understanding the intelligence that it can produce has
proved to be far more difficult.

The fact that we have the ability to consciously think about the world
around us, suggests that we have enormous (symbolic) processing capaci-
ties. Human understanding goes far beyond the learning behavior of most
(if not all) living organisms. The ability to learn has served as a stepping
stone towards comprehension. This ability itself is one that has developed
over many generations, species and millennia. The general tendency is that
higher species (which exhibit more complex behavior) are more recent prod-
ucts of evolutions [MSS95].

The pursuit to understand nature has produced quantum physics, which
in turn made possible innovations such as microprocessors. These micropro-
cessors have also proved their enormous, ever growing, processing capacity.
While modern microprocessors are also increasingly complex, they too are
based on a relatively simple concept: the transistor. In essence, a transistor
is quite similar to a neuron. The way in which these two building blocks are
organized, however, is quite different.

The dominant system architecture for microprocessors is ‘von Neumann’,
the common substrate silicon and the routing architecture VLSI1. The com-
putational core of a microprocessor goes through a serial process of fetching
and executing instructions at speeds of multiple GHz. A decade ago clock

1Very Large Scale Integration
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CHAPTER 1. INTRODUCTION 2

frequency was a factor of a 100 slower (measured in MHz). Also, the amount
of transistors on a chip has increased exponentially, according than Moore’s
famous law [Moo65]. The quantitative aspects of the physical structure (or
physiology) of microchips is immense. Ray Kurzweil, AI researcher, inven-
tor and analyst of technology trends, predicts that “[s]upercomputers will
achieve one human brain capacity by 2010, and personal computers will do
so by about 2020” [Kur99, Kur90].

Most models of brain organization consider nerve cells and their connec-
tions to be the brain’s fundamental units of information processing. How-
ever, profoundly complex and intelligent activities occur within nerve cells
[Ham03, pp. 9-10].

The first neural models developed by the psychologist Rosenblatt are
highly similar to those developed in electrical engineering [Fau94, p. 23].
Now, ANNs and evolution are approached from the field of computing, be-
sides biology, psychology, complexity and information theory. This high-
lights the interdisciplinary nature of these biologically inspired fields.

The architecture of the nervous system in humans is an enormous quan-
tity of neurons working in parallel. Frequency of ‘calculations’ per neuron
are very modest, at most 200 Hz [KW01, p. 129]2, but the brain makes up
for this because of the parallelism: up to 1011 neurons are actively process-
ing information at any moment [PWB87, p. 4]. Action potentials speeds
range from 0.55 m/s and up to 120 m/s3.

A topic on the application of biologically inspired principles to com-
puting is necessarily multidisciplinary of nature. The questions that are
addressed in this thesis could not be answered without drawing from a huge
body of research spanning evolutionary biology, complexity theory, neu-
rology, neurophysiology, evolutionary psychology4, theoretical and applied
computer science, Artificial Intelligence (AI), robotics and electronic engi-
neering. Creation of AI requires the insights of many of these fields.

1.2 Research questions

The following main research questions will be addressed:

1. What are driving principles for intelligence in biological sys-
tems, and what are their roles? (chapter 2)

2. Can we implement these principles artificially? (chapter 3)

3. Do they give rise to intelligence? (chapter 4)
2McCulloch in 1952: “perhaps 100 bits/s”, Kurzweil: 100Hz.
3100 m/s [Ham03, p. 61], 111 m/s [EA03, p. 1], perhaps up to 120 m/s [KW01, p.

132], 120 m/s [Pen90]
4The study of behavior that uses principles of natural selection to account for human

behaviors.[KW01]
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Chapter 2 will deal with the first question, by exploring biological views
on evolution and the brain. Principles such as evolution and neuronal struc-
tures will be identified as essential to intelligent.

The second question, ‘Can we implement these driving principles artifi-
cially?’, calls for answering a couple of subsequent questions:

1. What biologically-inspired systems have already been built?

2. To which degree are they biologically realistic?

3. What are currently barriers to implementation?

The third major question of this research (chapter 4), necessarily a philo-
sophically loaded question, will not be answered conclusively. Instead, two
views on the possibilities and limitations of evolution and the mind are dis-
cussed.

This thesis is a review of the literature concerning the above questions.
Literature was selected based on frequencies of citation and general popu-
larity and availability of criticism. An exception is the experiment on evolv-
ing morphology of virtual creatures by Goldstein, it is not well known. I
have repeated the experiment and the experiment is similar the more widely
known work of Karl Sims5. In the relatively small experiment, Goldstein
brings forward an important lesson learned that I wish to present.

1.3 Motivation and rationale

1.3.1 Intelligence defined

“ Intelligence usually means
‘the ability to solve hard problems’. ”

Marvin Minsky6

“The true sign of intelligence is not knowledge
but imagination.”
Albert Einstein

“Intelligence is the ability to adapt to change.”
Stephen Hawking

5Extensive material on Sims’ virtual creatures can be found here:
http://www.genarts.com/karl/

6Marvin Minsky has made many contributions to AI, cognitive psychology, mathemat-
ics, computational linguistics, robotics, and optics. In recent years he has worked chiefly
on imparting to machines the human capacity for common sense reasoning. His concep-
tion of human intellectual structure and function is presented in his book “The Society of
Mind” and further elaborated upon in his upcoming book “The Emotion Machine.” [from
www.KurzweilAI.net]. Quote seems to be from 1985.
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“Viewed narrowly, there seem to be
almost as many definitions of intelligence
as there were experts asked to define it.”
R. J. Sternberg quoted in [Gre98].

There exists no single, clear and concise definition of intelligence, how-
ever many have been suggested (see above and [LH07, Got97] for 70 more).
The fact that the definition of intelligence has received such devoted atten-
tion and still resists clarification so thoroughly, is alarming7 [Reb95, Jen99,
part III, §11]. Because the first definitions given were rooted in psychology,
specifically psychometrics (dealing mostly with measuring the human IQ),
it inherited a cultural subjectivity of what is to be dubbed intelligent. Con-
sequently, measuring how intelligent something is may be debated endlessly.
Since the purpose of concise definitions is to prevent ambiguities and the
resulting endless discussions (see your dictionary for a definition of the word
’definition’), we may want to lessen the definitional burden.

What intelligence involves is quite simple to identify: abstraction, learn-
ing and dealing with novelty. Whether it is exactly this set of abilities that
is fundamental, or another is hard to determine. Certainly, there is some
consensus around the data on intelligence. It shows that most suggested
abilities are significantly correlated, leading to the discovery of the g factor8.
Also, intelligence is graded, there is a smooth transition between systems,
which everyone would agree to be not intelligent and truly intelligent sys-
tems [Hut04, p. 2]. If it is ever pin-pointed what intelligence precisely is, or
when scientists finally concur, most theories that have strong support will all
be very close because of this strong correlation and overlap of these notions.
It is exactly the correlation that reveals that a general principle is respon-
sible for emergence of these abilities. Moreover, Jensen emphasizes that
“[i]t is not essentially a psychological or behavioral variable, but a biological
one, a property of the brain.” [Jen99, p. 1] In this research, intelligence is
approached from an evolutionary and biologically inspired perspective.

There is some general agreement that evolution is an important driving
force of intelligence. In animals (specifically chordates), neural networks
have served as the substrate for evolution of higher behavior. This is ad-
dressed in further detail in section 2.2.

1.3.2 Artificial Intelligence

The initial goal of Artificial Intelligence (AI) was recreating humanoid intel-
ligence, but the majority of AI research has prescribed ideal mathematical

7I suggest that it is alarming. Let it be clear that by no means it is my intention to
ridicule attempts at properly defining intelligence.

8The g factor is the highest-order common factor that can be extracted in a hierarchical
factor analysis from a large battery of diverse tests of various cognitive abilities [Jen99],
suggested by Charles Spearman in 1927 and still relevant.
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behavior into computers [Swe03, p. 1].
Russell and Norvig clearly outline what the field of AI conveys. The

definitions of AI vary along two main dimensions: first it is concerned with
thought processes and reasoning, second it deals with behavior. Addition-
ally, it is concerned with human performance or rationality (an ideal concept
of intelligence). Table 1.1 shows the main four categories. [RN95]

The sub areas of AI range from fundamentals, like knowledge repre-
sentation, knowledge acquisition, problem solving and search, to specific
concepts, like knowledge-based systems, intelligent agents, natural language
processing, machine learning, computer vision, or impacts. [RN95]

Table 1.1: Main A.I. categories

Systems that think like humans Systems that think rationally
Systems that act like humans Systems that act rationally

AI can be seen as having theoretical (science) and an applied (engineer-
ing) aspect. Most realized AI project include (1) A theory of intelligence,
(2) a formal model and (3) a computer system implementing the model.
[Wan06, p. 4]

Level of representation: connectionist versus symbolic AI

The best way to approach AI challenges is often a topic of vigorous dis-
cussion. The two main camps are connectionist9 and symbolic AI. This is
perhaps best illustrated by an example of speech recognition. For symbolic
AI, form and meaning of words are represented in terms of labelled symbolic
nodes [RMK06, p. 4]. Connectionists see the mapping of form to content
as something that should develop in a neural network through training by
examples. Connectionist pursue a bottom-up approach, while symbolic AI
tends to analyze the higher level relationships and model those.

1.3.3 Motivation

The study of intelligence and AI has cross-fertilized many fields, includ-
ing robotics, computer engineering (expert systems, conceptualization of
the semantic web), neurology10, psychology and even philosophy. Practi-
cal applications are OCR11, speech recognition, autonomous mobile robots,

9Bottom up. Often also referred to as Parallel Distributed Processing.
10A notable discovery is e.g. [SD02]: measurements on a cat’s visual cortex were fed

into an ANN simulation. The simulation approximated the real world situation and served
as a predictor for neuron behavior.

11Optical Character Recognition: recognition of hand- or typewritten text into machine-
editable text.
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driverless vehicles, etc. Accuracy and reliability of the former recognition
systems is often still low (an order of a magnitude below human performance
for speech [Lip97]). The fact that the later vehicles are often rated based on
the ‘mean time to intervention’ shows that work needs to be done to make
them truly autonomous and still able to deal with varying environments and
incomplete information. Non-AI applications usually completely lack these
properties, while they could be highly advantageous.

Through both highly theoretical (and often philosophical) and engineer-
ing work, we can gain insights into the very essence of ourselves and what is
yet to come. While this constitutes a very long journey, I’m personally eager
to take part in it and to be fascinated and perhaps surprised by it, just like
nature is inspirational and surprising. I have a fascination for understanding
‘the way things work’ and, if possible, creating something new.



Chapter 2

Biology’s driving principles
for intelligence

There are many processes at many levels that contribute to the phenomenon
called intelligence. These processes are approached from fields ranging from
cellular chemistry and neurology to psychology and sociology. Instead of
a complete treatment of these specific processes, I will focus on general
principles that seem to appear throughout these processes.

Unmistakably, the brain plays a role that is central to intelligence. In-
stead of only investigating the biological brain as it is now (section 2.1.1),
it also is interesting to know how and why it evolved into its current form
(section 2.2). These evolutionary principles are critical to the subsequent
chapter concerning artificial implementations. The observed increase of com-
plexity and brain size are addressed, in sections 2.3 and 2.4 respectively.

2.1 Substrates

2.1.1 The Brain

Many researchers agree that the brain is poorly understood [Got97, p. 14].
However, numerous studies have been conducted and proved very valuable;
more knowledge is acquired by the day. Luckily, complex and often com-
plicated phenomena are found to have underlying principles that are not
very complicated by themselves. The brain can be studied from an anatom-
ical or a functional point of view. Anatomically, it must be pointed out
that the neo-cortex is the latest evolutionary addition. It is only present in
mammals. The cortex in total makes up for more than 80% of the brain’s
volume. It is the outer layer of the (fore)brain. It is ‘folded’ into gyri and
sulci (bumps and cracks) to fit the area of 0.25 m2 (equivalent of four A4

7



CHAPTER 2. BIOLOGY’S DRIVERS FOR INTELLIGENCE 8

sheets of paper1) into our skull. [CGC+98, KW01, p. 56]. The cortex is
essential to our higher functioning, because of its high connectedness.

It is an important principle that evolution adds layers and retains the
old ones. Our neocortex is the latest addition. For coordinated movement,
each layer adds a refinement to the more primitive ones. The more primitive
layers provide reflexes and allows you to maintain posture without conscious
intervention. For thoughts, each layer allows a higher level of conceptualiza-
tion. The neocortex consists of an extremely dense set of neurons (circa 104

neurons/mm3) [RMK06, p. 100]. The brain is organized for information
to travel multiple paths even in a specialized subsystem, and lateral con-
nections complement the received signals. Excitation and inhibition are the
basic interaction of the 100,000,000,000 neurons2. Together with an even
larger number of neuroglia3 that support the neurons and help direct their
growth.

Since our goal is to distil important properties of the brain, we will not
discuss neuroanatomy any further. The function of brain and cognition
is to enable the organism to attend to, process, and behaviorally respond
to the forms of information and conditions that co-varied with survival or
reproductive prospects during the species’ evolutionary history [Gea05, p.
125].

An important feature that is often forgotten is that the brain is connected
to a very versatile and capable body. It allows us to perceive a lot of our
environment, and manipulate objects. The brain itself did not evolve by
itself, it did so together with this body and, unique to humans, with complex
tool use.

Perhaps the most prominent contribution to the understanding of neural
dynamics was that of Donald Hebb [RMK06]. In commonly called ‘Hebbian
learning’ a synapse between two neurons is strengthened when both the
presynaptic (input) and postsynaptic (output) neurons are firing simultane-
ously. This form of self-organization is, despite its simplicity, now considered
a general principle [Nol01, p. 51]. It allows associations of stimuli to arise,
and serves to explain phenomena such as conditioning and associative learn-
ing4.

2.1.2 The neuron and neuronal structures

The building block of the nervous systems is the neuron (or nerve cell), de-
picted in figure 2.1. It receives stimuli or ‘input’ (e.g. from another nerve

1ISO paper standard defines: An = 2−n square meter, A4 = 2−4 m2, so 4*A4 = 4*1/16

= 0.25 m2

2[BK92, p. 7] say 1011, [KW01, pp. 47, 79] say 80 billion neurons (order of 1011).
3The earlier neuron count excludes another 1011, perhaps even 1012 neuroglia (see also:

http://www.sfn.org/index.cfm?pagename=brainBriefings astrocytes ).
4Memory formation is a more complicated subject.
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cell) at its dendrites. Inputs can be exitatory (additive) or inhibitory. Once
a certain threshold is reached, the neuron will propagate an action potential
through its axon. Action potentials speeds range between 0.55 m/s and 111
m/s5. The myelin sheets cover the axon to minimize the amount of energy
needed (and corresponding ion influx and efflux) to propagate the action
potential at high speeds. Finally, the action potential will release neuro-
transmitters at its axon terminals which may be connected to subsequent
neurons or to the muscles.

Figure 2.1: A neuron covered in myelin, conducting an action potential in
the rightward direction. Adapted from: Dhp1080 on Wikimedia (originally
adapted from: ‘Anatomy and Physiology’ by the US National Cancer Insti-
tute’s Surveillance, Epidemiology and End Results (SEER) Program).

Also, the interconnectedness is very high; in the order of 104 synapses
on average per neuron [BK92, p. 7]. There are various types of neurons,
but they respect the general features mentioned above. The cells in the
neuronal population have varying types of “transistor” properties. Cells in
the cerebellum are fine-tuned and worked out for motor effectors, cortical
cells are pyramidal and have their own characteristics and so do ‘association
neurons’ in the thalamus.

2.1.3 Substrates in general

“To find real complexity on the scale dimension, we may look at the human
body: if we zoom in we encounter complex structures at least at the levels of
complete organism, organs, tissues, cells, organelles, polymers, monomers,
atoms, nucleons, and elementary particles.”. [Hey96]

I could dedicate an entire chapter to the intricacies and suitability of
various structures or ‘substrates’, but this is not necessary for our purpose.
It suffices to say that at their level, each substrate is very important - if
not critical - to what originates from neuronal structures, the neuron, the

5111 m/s [EA03, p. 1]. Perhaps up to 120 m/s [KW01, p. 132]. 100 m/s [Ham03, p.
61].
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biological cell, proteins or genetic substrates such as DNA and RNA. Ef-
fects of low level impairments can cascade and expand over time [Elm05,
p. 115]. Thus, for each of these structural levels there is an evolutionary
pressure to improve internal organization and interactions with other levels.
The internal organic medium is a basis for evolution and so is the external
biotope. The structural levels extend up to the macroscopic ecology, pro-
viding a wide range of substrates spanning 12 orders of magnitude of scale
at which evolution simultaneously does its work [Ray99].

2.2 Evolution

“If you consider all the biochemical steps required to get a
message across a synapse, [...] you may wonder why such a
complex communication system ever developed. The answer

must be that this arrangement makes up for its complexity by
allowing the nervous system to be flexible about the behavior it

produces.”
Bryan Kolb & Ian Wishaw (2001) [KW01, p. 162]

The human evolution highlights the importance of flexibility mentioned by
Kolb and Wishaw (see also section 2.3). But what is evolution precisely?
Evolution is a process that is applicable to biology, culture and even ele-
mentary particles. Unless stated otherwise, by evolution, we mean biolog-
ical evolution theory6. While this disambiguation may seem unnecessary,
evolutionary processes happen at various levels of scale, even in biology. For
example, processes of learning encompass “the long internal process which
changes structural properties of its carrier system”[Wik07a]. Perhaps it is
not so intuitive, but this is certainly applicable to development, learning
and memory-formation in the brain. To avoid confusion with biological evo-
lution in the regular sense, we will call these Darwinian processes. Calvin
describes a Darwinian process as: “A pattern (spatiotemporal firing pattern
of a Hebbian cell-assembly, in this case) that copies with occasional varia-
tion, where populations of the variants compete for a limited work space,
their relative success biased by a multi-faceted environment (both memo-
rized and real-time, in this case), and with further variations centered on
the more successful of the current generation (Darwin’s inheritance princi-
ple).” [Cal98] The brain allows patterns and ideas to compete across lateral
connections. Multiple, perhaps conflicting or incomplete signals are often
interpreted without much effort. We are wired to perceive and learn from
our environment, to be able to adapt to it.

Evolution, or ‘descent with modification’ [Cha01], is thought to consist
of several elements [Cal04, Ch. 10]:

6Defined as: “Biological evolution is the process of change over time in the heritable
characteristics, or traits, of a population of organisms.” – source: Wikipedia
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1. A pattern (or substrate in our terminology)

2. The pattern (or substrate) is copied.

3. Variations occur, typically from copying errors and recombinations.
Some of this variance is heritable [Cha01].

4. Variants compete with eachother for finite resources or space.

5. Finally, the next round (generation) is centered around those varia-
tions that proved to be more successful (at reproducing, not just at
surviving).

Element 3 is non-deterministic, or ‘random’. The final element is not.
Furthermore, opening (biological) niches due, climate change, sexual recom-
bination, speciation7 and temporary inbreeding (island populations) cat-
alyze the evolutionary process [Cal98, Cal04, ch. 10].

2.3 Evolution and complexity

”Nature works by steps. The atoms form molecules, the
molecules form bases, the bases direct the formation of amino

acids, the amino acids form proteins, and proteins work in
cells. The cells make up first of all the simple animals, and

then the sophisticated ones, climbing step by step. The stable
units that compose one level or stratum are the raw material for
random encounters which produce higher configurations, some
of which will chance to be stable... Evolution is the climbing of

a ladder from simple to complex by steps, each of which is
stable in itself.”

Jacob Bronowski (1973)

Also sharing this view on stratum theory and its implications are, Butler
(1878, 1880), van den Tweel (1988), Heylighen [Hey96] and Vroon [Vro89,
p. 175]. It corresponds with the observation that cognitively higher species
(which exhibit more intelligent behavior) tend to be more recent products
of evolutions [MSS95].

Does evolution lead to greater complexity? Since it is a general tendency,
it is often erroneously believed to always be the case. In some cases, simpli-
fication allows for more robustness, efficiency and specialization, both in a
biological and digital evolutionary medium [Ray94, p. 14]. But when evo-
lutionary pressues demand an adequate response to variant circumstances,
complexity is favored [Gea05].

7The evolutionary formation of new biological species, usually by the division of a
single species into two or more genetically distinct ones. Source: The American Heritage
Dictionary of the English Language, Fourth Edition
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Functional complexification follows from the need to increase the variety
of actions in order to cope with more diverse environmental perturbations,
and the need to integrate actions into higher-order complexes in order to
minimize the difficulty of decision-making [Hey96, Gea05]. Both processes
produce a hierarchy of nested supersystems or metasystems, and tend to be
self-reinforcing. Though simplicity is a selective factor, it does not tend to
arrest or reverse overall complexification. Increase in the absolute compo-
nents of fitness, which is associated with complexification, defines a preferred
direction for evolution, although the process remains wholly unpredictable.
[Hey96]

2.4 Intelligence and brain size

There was nearly a threefold increase in brain size from apes to modern
humans [KW01, p. 24], roughly according to an exponential growth trend8.
There are several things that we do better than apes, that are demanding
for the brain. These differences may provide insights into our intellectual
growth. Performing well in complex, diverse and most notably novel cir-
cumstances requires generally useful cognitive faculties9. Problem-specific
skills are not as useful when facing a new challenge. Static or invariant con-
ditions create pressures for the evolution of modularized systems10 whereas
dynamic conditions create pressures for modular plasticity and the evolution
of less modularized, domain-general systems [Gea05, p. 125].

A recent meta-study by McDaniel confirms a significantly positive rela-
tion (0.33) between brain volume and (general) intelligence [McD05]. Azam
nuances this by saying that “[i]t can be deduced that an increase in brain
size does not necessarily increase the sophistication or behavioral diversity,
unless accompanied by a corresponding increase in specialized brain mod-
ules” [Aza00, p. 15]. Others suggest that the correlation of brain volume to
intelligence is poor and that factors such as glia-to-neuron ratios11 can serve
as a possible determinant [KW01, p. 572]. There is a moderate correlation
between IQ and kinship12 (r = 0.86) for identical twins. This influence in-
creases with age [Sha02, pp. 89-92]. This shows that intelligence is heritable
and, when useful, evolution will favor the more intelligent.

Macroscopically, humans were quite flexible and often filled biological
niches that became available. Purely (evolutionary) biological changes sug-

8Based on archaeological skull research. [CGC+98]
9Development of beliefs and mental models of the world, generalization, association,

causality, logic, reasoning.
10Modularized systems are the more specialized systems, as opposed to domain-general

systems.
11Glia are cells that provide nutrients to the neurons. They are in-between the blood

veins and the neurons.
12Kinship: Measure of genetic relationship.
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gestions have also been made. The increase of brain size is constrained by a
problem of heat dissipation. The so called ‘radiator hypothesis’ states that
more adequate cooling that can be found in humans may have made this
increase possible [Fal05].

Based on recent datasets (contemporary subjects), larger brain volumes
were associated with higher general fluid intelligence13 (r = 0.49), larger
short-term memory capacity (r = 0.45), and faster speed of processing (rs
about -0.4) but were unrelated to general crystallized intelligence14 (r =
0.06) [WVL00, Gea05, p. 114]. Fluid intelligence related traits seems to
have arisen together with the increase in brain size.

Many suggest language is important to the development of intelligence
[Cal04, KW01, p. 533], others suggest it is not critical [Pen90, p. 414]. The
level of toolmaking seems to be an indicator of intelligence, but not a driv-
ing force. During periods of conservatism, without advances in toolmaking,
brain size had been gradually increasing, so it appears it did not signifi-
cantly stimulate an increase in brain size. The level of tool usage, however,
differs dramatically between early and later hominids. Throwing objects re-
quires planning a motion ahead and perfecting it under different distances,
with differing object weights, etc. In hunting, improvements were directly
rewarded with food [Cal04, Ch. 8]. Taking from the catch of others is often
accepted if one contributes. Keeping track of this required improvements in
memory and language.

The precise reasons for intelligence can not easily be derived from a phys-
iological view. Some evolutionary events have lead to plausible explanations
for the development of our intelligence.

2.5 Development

In contrast with the extreme view of a newborn’s state being a tabula rasa
or ‘clean slate’15, evidence suggests that humans are equipped with several
highly evolved preconditions for abilities from the moment of conception16

(based on the genotype). From the moment of conception, interactions
with the environment develop these features, shaping the phenotype. The
sensory modalities vision, hearing, touch and smell provide stimuli. The
stimuli direct the wiring of neurons, and areas of the brain are recruited that
become specialized in precessing this information. Interconnection of these
specialized systems or ‘modules’ is highly plastic during early development.

13General fluid intelligence: the ability to solve problems and to learn.
14General crystallized intelligence: Acquired knowledge of the world, (e.g. common-

sense, mental models, vocabulary, etc.).
15In AI, tabula rasa is also used to highlight that an AI system is not programmed with

facts but arrives at its conclusions by its internal dynamics.
16Conception is the initial stage [Sha02, pp. 102], not birth recognizing prenatal influ-

ences.
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The experiences needed to adjust these plastic features to these ecologies
are generated by children’s natural social, play, and exploratory activities
[Gea05, p. 125].

Learning in humans occurs on-line, as opposed to batch learning used
mostly in machine learning. The balancing of learning (exploring) and using
what is learned (exploiting) is very important to development. In section
3.2.2 a simulation of ‘infant development’ will be given. On-line learning is
important in this example.



Chapter 3

Artificial Implementation

Human-like intelligence relies on machinery of high sophistication in terms
of processing capabilities. In this chapter I’m going to discuss artificial coun-
terparts to two mechanisms that have played a key role in the development
of intelligence in biological systems: evolution and neural networks (section
3.1).

In an attempt to understand and a hope to eventually harness the
strengths of this machinery, artificial neural networks and evolutionary al-
gorithms have been created. Different versions of these mechanisms have
been created to answer different questions or to harness different qualities
of these algorithms.

Neural networks have been modeled at the level of the synapse to an-
swer neurobiological and neurophysiological questions and to test hypotheses
about the workings of the brain. Other implementations were used to clas-
sify images or patterns. The most common implementation of the artificial
neural network (the canonical neural network), however, is not the most
detailed nor biologically plausible version. The canonical neural network
will first be presented, and the discussion that follows will address whether
essential features are left out, or whether other implementations are feasible.

Implementation of another instance of evolution, next to natural evo-
lution, brings forward many questions [Ray99]. What assumptions can be
made, on what basis can we compare it, etc. Again, multiple perspectives on
evolution result in different implementations of artificial evolution (see also
section 4.2). Like with neural networks, a common evolutionary algorithm
will be used as a reference example.

3.1 Artificial counterparts of key mechanisms

3.1.1 Evolutionary algorithms

Evolutionary algorithms (EAs) are a biologically inspired set of rules that
describe the use of an evolutionary process in computation. In the typical

15
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EA, during a generation, members of a population are ranked according to a
fitness function. Those members with the highest fitness ranking are given a
higher chance to become parents for the next generation, the offspring. The
exact method used to generate offspring from the parents, is termed the
reproduction heuristic. The common reproduction heuristic is a mutation
rate (per chromosome) and sometimes also a chance of having mutations.
After a number of iterations, a typical population increases its fitness and
converges towards (local) optima. EAs function very well at optimization
when the search space is large.

3.1.2 Genetic algorithms

Genetic Algorithms (GAs), as developed by John Holland [Hol75], are Evolu-
tionary Algorithms that use genetic recombination as the main reproduction
heuristic, accompanied with mutation.

With GAs, biological consistency is maintained to a further extent than
EAs, especially when n-point crossover is used. Uniform Crossover, a given
probability of cross-over at any gene, is not biologically consistent and is
not widely used. There are also parallel reproductive heuristics, where mul-
tiple populations are evolved but mostly (or entirely) kept separate, Calvin
[Cal04, Ch. 10] argues this has been an important extra catalyst to natu-
ral evolution. For an overview of the different reproductive heuristics read
Gordon and Whitley [GW93]. All known species in nature either produce
asexual (one parent) or sexual (two-parent) recombination. This restriction
is not a requirement in artificial algorithms and improvements in perfor-
mance have been reported when increasing the number of parents [ERR94].
Sex is another catalyst, but not an essential according to Calvin [Cal04].
Box 3.1.1 displays the pseudo-code of Holland’s Simple Genetic Algorithm
(SGA). [MT95]

Algorithm 3.1.1: GeneticEvolution(P )

t← 0;
initialize(P (t = 0));
evaluate(P (t = 0));
while isNotTerminated()

do



Pp(t)← P (t).selectParents();
Pc(t)← reproduction(Pp);
mutate(Pc(t));
evaluate(Pc(t));
P (t + 1)← buildNextGenerationFrom(Pc(t), P (t));
t← t + 1;

end
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Figure 3.1: Evolutionary Algorithms (above left), their subtype Genetic Al-
gorithms (bottom left), Evolutionary Programming (top right) and Genetic
Programming (bottom right).

Evolutionary algorithms are also used to directly evolve lines of computer
programming code, this is called Evolutionary Programming (EP) and Ge-
netic Programming (GP) when recombination is used. The relation between
these four domains is displayed in UML notation in figure 3.1.

In section 3.2.1 I will present an example of an application of a genetic
algorithm.

3.1.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) have multiple representational forms.
The most common are the mathematical (equation 3.2) and graphical form
(figure 3.2). For each Artificial Neuron, the mathematical form consists
of a function g(x) of the input vector x, where x = (x1, x2, . . . , xi). Each
input xi is weighted according to its weight w = (w1, w2, . . . , wi). K is the
post-processing function that is finally applied. This results in the following
equation for a single neuron:

g(x) = K

(∑
i

wixi)

)
(3.1)

Neural Networks consist of multiple artificial neurons like these. The output
of one neuron is connected to the input of another neuron. Mathematically,
g(x) (the result of equation 3.1) is an input to a neuron with functionf(x):

f(x) = K

(∑
i

wigi(x)

)
(3.2)

To introduce non-linearity, a hyperbolic tangent or sigmoid (S-shaped)
function is commonly used for K. Non-linearity is deliberately analogous to
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Figure 3.2: An example graphical representation of a Multi-layer Feed For-
ward Neural Network.

biological neurons, and responsible for its versatile information processing
properties.

A reason for its popularity [Wik07b] in neural networks is because the
sigmoid function satisfies the differential equation y′ = y(1 − y). The right
hand side is a low order polynomial. Furthermore, the polynomial has fac-
tors y and 1−y, both of which are simple to compute. Given y = sig(t) at a
particular t, the derivative of the sigmoid function at that t can be obtained
by multiplying the two factors together. These relationships result in sim-
plified implementations of artificial neural networks with artificial neurons.

3.1.4 Evolving neural networks (EA and ANN combined)

Intelligence cannot be attributed to a distinct concept such as EA or ANN
alone. Similar to the vigorous nature versus nurture debate, both can be
attributed to play an important role, while it is the combination that results
in the end product.

Evolution is agnostic about what to develop - it has no design goals
[Hop82, p. 2254] - but qualities do emerge that have co-varied with the
prospects of persistence of this quality. The prospect of persistence is nor-
mally related to the reproductive and survival prospects of the individuals
in a population [Gea05, p. 99]. In artificial systems it is determined by the
fitness function. In section 4.2, possible issues with the fitness function are
further discussed.

Evolutionary algorithms are often employed to solve optimization prob-
lems which are otherwise computationally prohibitive/expensive (np-hard
and np-complete problems). While they are useful in this respect, it greatly
undervalues their potential of being able to develop solutions to any chal-
lenge. Evolutionary algorithms have no difficulty evolving circuits beyond
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Figure 3.3: The gentype of the virtual creature. Adapted from [GG07] with
permission.

the complexity that human designers can grasp [Hop82, p. 2256]. It is
critical to note that evolution and artificial evolution succeed in finding a
solution to problems without explicitly giving it knowledge on how to solve
the problem and regardless of what the problem is. I argue that this gener-
ality is important to intelligence and to achieving artificial intelligence.

3.2 Example implementations

3.2.1 Genetic evolution of virtual creature morphology and
control

“Instinct is intelligence incapable of self-consciousness.”
John Sterling

Goldstein and Godoy [GG07] have evolved creatures of varying shapes1

and joint positions and strengths. This first example will illustrate the
ability of genetic algorithms to differentiate and optimize the physiology of
virtual creatures.

The implementation

A genetic algorithm evolves a population of virtual creatures. At first it is
randomly initialized (with some constraints such as maximum number of
body-parts). Each genotype (genetic code) prescribes exactly the charac-
teristics of the individual, the phenotype. Besides body-part sizes, control
of the artificial muscles connected to the joints is also determined by the
genotype (see figure 3.3 and figure 3.4). The muscles are controlled by a
sensomotoric neural network, sensing and actuating muscles. The control-
ling “nervous system” is non-central, each joint has its own independent
neural network.

1Morphology: concerning the form or shape in general, or physiology in biology.
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Figure 3.4: The phenotype of the virtual creature. Adapted from [GG07]
with permission.

The selection process is based on the distance traveled from the starting
point. This distance is evaluated by a simulation in a physics engine. The
calculations are normally non-visual, but can be visualized in 3D by a tool
(see figure 3.5)2.

Figure 3.5: A screenshot of the EvoMorph visualization tool rendering a
crawling creature in 3D with openGLTM .

Lessons learned

It is important to realize that there are many implementation issues, that
one may not think of at first. How do you measure distance traveled? Do
you measure from the center of the body or the outside? If the creature is
larger or very long, this scale advantage may not be fair. Using the wrong
Cartesian coordinate will result in creatures with jumping behavior as their
main trait, instead of locomotion. Is distance based on the final position

2A short video clip is available at: http://studie.erikdebruijn.nl/thesis/
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vector minus the initial position vector, or do you sample in-between? Crea-
tures that are very fast but run in circles would lose from slow but straight
movers. Sampling positions very often might award a ‘trembling’ creature
with movement, while it stays on the spot in longer timespans.

The previous illustrates that there are many considerations when design-
ing a selection function. You get what you select (very literally), but the
way in which the creatures do it is creative and may be unexpected. Not
only is the genetic algorithm able to evolve better locomotion strategies, it is
also able to “find” and exploit inaccuracies in the physics engine to achieve a
high fitness. It is very important to think through the fitness function. This
may include formulating a penalty for cheating the physics engine (causing
unrealistic simulated behavior). Especially with repetitive motion patterns
rounding errors can accumulate [KN93].

It also matters a great deal what reproductive heuristic you choose. Do
you recombine only properties with the top-ranking? If so, the whole pop-
ulation might become quite homogeneous after a while and only a (very)
select part of the search space will be searched (very) thoroughly. In other
words: a lot of ‘strategies’ will not be ‘tried’, there will be at most fine-tuning
of a main theme (which is itself quite random). Would you recombine two
parents or a different number?3 Another important observation is that after
some generations, the creatures do not immediately converge into only one
shape with one locomotion strategy. For a long time various strategies will
exist side by side. Many ‘strategies’4 arise, like hopping, walking, rolling,
pushing, swimming.

Relation to other work

The relation to the evolution of biological species is clear, however it is
highly simplified. There is no interaction between creatures and goals are
static. No actual learning occurs during a lifetime: only changes to the
input of neural networks, no changes to the structure. However, knowledge
is accumulated across generations.

There are many examples of research into Artificial Life5. Thomas Ray’s
Tierra shows an ecology of programs competing for resources. Parasite-host,

3An apt quote in this regard is: “Sex is a relatively recent addition to the dance of life.
For more than 2,000,000,000 years, asexual reproduction was the rule. You know, if you
were a creature, you just separated into two clones.” – Mark Jerome Walters

4When I say ‘strategies’ I do not conjecture that they have thought of a way to reach
a goal. The experimenter has a goal, but the algorithms are just procedures which should
not be ascribed any motivations. Creations are often ascribe more human-like properties
than can scientifically be justified [SZ98].

5It is disputable whether the example may be labeled Artificial Life, since there is
no adaptation, socialization nor is there growth. Oparin [Opa38] proposed that living
matter be defined as having the following properties: metabolism, self-reproduction, and
mutability.
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parasite-hyperparasite relationships arise, etc. Ray’s Tierra is an example
of ’programs’ that evolve native to the digital medium. The former example
illustrates, by analogy, the evolution of insect-like6 creatures. While this
example makes use of both ANNs and EAs, all behavior is purely instinctive.
While some individuals may appear to act intelligently, this is certainly not
consciously. Of any individual it would depend on chance if it would cope
well under novel circumstances.

3.2.2 Babybot: an artificial developing robotic agent

”[...] It can also be maintained that it is best to provide the
machine with the best sense organs that money can buy, and
then teach it to understand and speak English. This process

could follow the normal teaching of a child. [...]”
Alan Turing (1912-1954) [Tur50]

Metta et. al. [MPMS00a, MPMS00b] describe their experimental robot
which is displayed in figure 3.6. The theoretical foundation of Metta e.a. are
rooted in the ‘Piagetian’ theory of Jean Piaget, psychologist with a biology
background. He is widely known for his theories on the development and
‘the teaching of a child’ (in ‘The origin of intelligence in children’ [Pia36]).
He defined intelligence as a basic life process that helps an organism to adapt
to its environment [Sha02, p. 50].

The example of evolving morphology and control is biologically similar to
insects with more or less deterministic, static responses to stimuli. Evolution
produces a 1 on 1 mapping of genotype to phenotype. To model higher
level organisms such as a humanoid baby, with its complex brain structure,
it is essential to take into account the interactions of development of the
phenotype of the individual. This ‘development’ allows the emergence of
qualities such as intelligence.

The implementation

Another difference is that Babybot is physically realized as a robot. This
essentially means that the “physics are free”. This nullifies the problems
of inaccuracy of simulated physics and perhaps an overly homogeneous or
unrealistic environment (such as in the virtual creatures example).

It was constructed to be a test bed for various theories of human devel-
opment, and is thus constructed with biologic realism in mind. For example,
the robot observes the world through a high-resolution fovea and a progres-
sively lower resolution periphery. Furthermore, it includes two microphones,

6In terms of the level of simplicity, not its specific morphology, which is always six
legged for insects.
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(a) (b)

Figure 3.6: The LiraLab Babybot. (a) Babybot interacting with its envi-
ronment. (b) Schematic version showing its degrees of freedom (DoF)

an inertial device and motor encoders (that can effectuate movement for 12
DoF7).

Lessons learned and relation to other work

Even if it were possible for a genetic code to convey the complexity of the
end product, which is isn’t [Cha96, pp. 9, 15], it would be highly ineffi-
cient. Nature solves this by encoding growth patterns, not the end product.
Boers and Kuiper [BK92, Chapter 4] emphasize that the recipe is geneti-
cally stored, not the blueprint (also [Cha96, pp. 9, 15, 16]). They model
this recipe in terms of L-systems which can approximate growth8. It is well
known that modularization has occurred in many biological systems9. The
brain is not an exception. Modularization plays an essential role, for stabil-
ity and also for efficiency (modules can be repeated) [Aza00]. The brain can
be considered modular as well. The importance of a ‘bootstrapping process’
is highlighted by Metta et.al. The modules are plastic in critical periods
and become more stable over time. The development of modules later on is
highly affected by earlier modules. [MPMS00b] “[Newborns] show a series
of ‘innate’ behaviors, basic control synergies and reflexes10.” [MPMS00b].

7In mechanics, degrees of freedom (DoF) are the set of independent displacements that
specify completely the displaced or deformed position of the body or system.
Source: Wikipedia (retrieved 15 October 2007).

8Lindenmayer-systems are introduced by Astrid Lindenmayer in an attempt to model
the biological growth of plants.

9Think of organs, cells, chromosomes, etc.
10A reflex is an involuntary and automatic response to a stimulus, such as when the eye

automatically blinks in response to a puff of air. [Sha02, p. 134]
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The primitive reflexes are controlled by the lower ‘subcortical’ areas of the
brain and are lost11 once the higher centers of the cerebral cortex mature
and begin to guide voluntary behaviors [Sha02, p. 137]. The robot ex-
plores and exploits its environment simultaneously. Balancing the trade-off
between exploration and exploitation is an important problem [KLM96, p.
243]. When eye movements become reliable and consistent the neck started
moving as well, which provided feedback from the inertial sensors. The goal
of the designer has shifted to devising a suitable initial state (at time t0),
and the appropriate developmental rules to get some close approximation
of the desired ‘final product’ as opposed to building the final product itself
[MPMS00b]. The robot faced problems of overshooting targets and correc-
tive oscillations. The time slots for enabling modules were explicitly but
carefully programmed [MPMS00a, p. 9].

This research provides valuable insights into the process of learning of
(spatial) perception and originating abilities. For further work it would
be interesting to know whether the timing of this ‘bootstrap process’ is
genetically orchestrated (literally prescribed) or whether the timings purely
depends on the reliability and consistency of a developing module (a dynamic
and variant property of individuals). The above experiment12 does not yet
validate whether this is the case, but makes it plausible. Moreover, neuronal
growth mechanisms are ‘challenged’ to create a representation (exploration)
of a real-world problem domain, while concurrently exploiting it (making use
of what is learned). “As we examine, [development] is a uniquely powerful
and general learning strategy that undermines the central assumptions of
classical learnability theory, which is premised on the assumption that the
learning properties of a system can be deduced from a fixed computational
architecture.” [QS82, p. 23]

3.3 Barriers to implementation

3.3.1 A suitable substrate

Implementation of plasticity

No one will argue against the fact that the ‘software’ in every brain is dif-
ferent, because it depends on the actual experiences to take shape. However
the ‘software’ is not stored in special purpose memory gates (that can con-
tain just any binary encoded value). The behavior that originates from the
brain is ‘encoded’ in its structure:

11Or, [MPMS00a, p. 9] suggest they may become embedded into more complex control
structures.

12Similar to the my own (unfinished) experiment ‘RoboSense Experiment 1’ on
http://studie.erikdebruijn.nl/thesis/
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“Learning does not just alter the knowledge base for a fixed
computational engine,

it alters the internal computational architecture itself.”
Andy Clark [Cla01]

Plasticity (in the sense of changing interconnection topology) is funda-
mental to learning in biology.

Currently, when creating a processor device, all attempts are made to
make sure every piece of hardware is the same. Elimination of variation is a
central thought when manufacturing computer chips. A microprocessor with
too much variability13 in its substrate, would render it useless. By design
it depends on deterministic behavior of its components. Biological neural
structures, which are plastic, are much more robust and can even make use
of the physical diversity of its micro-environment [CdZR93]. An enormous
contribution of von Neumann to computing is to store data and executable
code both in memory, lifting the limitation of application specificness of
computers14. While operations and data are on the same medium, reliable
execution demands that data is never mistaken for operations or vice versa.
This has been an important source of problems and exploitability in software.
The brain doesn’t work based on a clear distinction. To the brain, memory
and experience is inherently meaningful (which data by definition is not)
and greatly determine the way we interpret and perceive. Interpretation
and perception of the brain can hardly be considered programs performing
operations. This illustrates a fundamental difference of the architectures of
the traditional computer and the brain. A computer’s memory resides in
distinct units, while the brain encodes every memory in its structure.

The former is a comparison of traditional computing to the brain. Ob-
viously, simulating neural behavior (with ANNs) would be more similar to
the functioning of the brain. But the logical and physical separation of
memory units and processing units puts considerable requirements on the
I/O speed and bandwidth of traditional architectures. A possible way out
of this is using a different VLSI chip architecture: FPGA15. An FPGA is
essentially an array of memory that manifests as logic gates. Next to the
logic areas, there are (re)programmable interconnect blocks that constitute
the switching areas. The discrete state nature of digital computers has been
considered a problem. Analog VLSI (aVLSI) is another approach which

13e.g. due to impure silicon, lithographic mask alignment variations, a scratch on a lens
or dust during production.

14“In a special purpose machine the computational procedure could be part of the
hardware. In a general purpose one the instructions must be as changeable as the numbers
they acted upon. Therefore, why not encode the instructions into numeric form and store
instructions and data in the same memory? This frequently is viewed as the principal
contribution provided by von Neumann’s insight into the nature of what a computer
should be.” [Ril87]

15FPGA is the acronym for Field-programmable gate array
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does not have the problem of computationally expensive multiplication by
logic gates [ZS03].

Neural Networks are characterized by parallelism, modularity and dy-
namic adaptation. FPGAs are well-suited because of concurrency, and re-
configurability. The reconfigurability FPGA aspect is exploited in several
ways. In a sense, neuroplasticity is achieved by topology adaptation. Learn-
ing is implemented by adaptation of weights. FPGAs also provide a good
basis for rapid prototyping of ANN designs [ZS03].

Massive parallelism

Perhaps the most distinguishing feature of the brain in comparison to regular
computing is massive parallelism. While primarily a quantitative difference,
it has significant implications to the character of processing in the brain.
This can be illustrated by the example of recognizing a figure. This process
normally occurs so fast that given the speed of neural interconnections, only
something in the order of a hundred consecutive processing steps could have
taken place [Ham03, p. 11]. Meaningful integration of many concurrent
processes is important to relatively slow, in comparison to electronic circuits,
neural communication.

Whereas in conventional computers synchronization of the digital build-
ing blocks is achieved using a clock signal, there is no such global clock
in biological systems. Processes can execute slowly and unconsciously si-
multaneous with others that are conscious. In a more biologically oriented
simulation, global synchronization should be avoided [Roj96].

Currently, the maximum reported scale based on FPGA seems around
65 million simulated neurons16. The initial goal of 1 billion can still be
reached, since it’s not a constraint of the architecture [dGKG+98, dGK02].
Importantly, such a larger number of neurons could be simulated on an
ordinary computer, but it would very slow instead of real-time.

Rich connectedness

The brain is also praised for its ability to integrate many signals. This
is not just an opinion because the average has between 10.000 to 100.000
synapses (human brain)17. The architecture of brain very different from se-
rial processors. Other routes have been suggested and are pursued: Parallel
computing, neuromorphic engineering, optic-holographic [PWB87]18 [Nol01,
pp. 55, 189-195] and molecular [CdZR93]. Molecular computers may solve
the scaling problem.

16As far as I could find. There are some false claims of 1 billion neurons made [Kur99,
p. 80] and recited [Nol01, p. 54], but that was the unrealized goal.

17[BK92, p. 7] say: 104 synapses on average per neuron.
18The first optical implementation of neural networks was proposed by D. Psaltis, cited

here.



CHAPTER 3. ARTIFICIAL IMPLEMENTATION 27

Apart from a medium for 3D pictures, holography may be a promising
method of optical interconnection.

“In contrast with implementations, in which the specifications of the con-
nection patterns must be stored separately from the connections themselves,
holographic media can simultaneously provide both the massive physical in-
terconnectivity and the large memory required to specify the connections.
This duality is particularly useful in adaptive networks.” [Ram98]

3.3.2 General intelligence

”How strange that our most advanced systems can compete
with human specialists, yet be unable to do many things that

seem easy to children.”
Marvin Minsky

There have been many achievements by symbolic approaches in AI. Most of
these are focused on the category “systems that think rationally” (as dis-
cussed in section 1.3.2) and are highly specialized. “[M]ost well-structured
problems such as textbook math and science problems, are simple because
they tend to engage a constrained set of variables that behave in a pre-
dictable ways.” [Ese06]. Some ascribe intelligence to an agent capable of
solving diverse problems [LH06]. This would apply to Simon and Newell’s
General Problem Solver (GPS) and the universal proof searcher, the Gödel
machine (see section 4.1.3).

There are two types of intelligence: fluid or crystallized. Roughly, the
former is categorized as the ability to learn or to solve problems, the latter
is that which is learned. General intelligence (Spearman’s g-factor) is highly
related to the fluid type of intelligence. Moreover, there is a strong neural
basis for this relation. The general form of intelligence is highly influenced
specifically by a frontal system [JD00].



Chapter 4

Emergence of intelligence

This chapter attempts to address whether the former techniques of artificial
implementation (presented in chapter 3) actually give rise to intelligence.
Since no conclusive answer can be given within the scope of this thesis,
I will bring forward two views on the possibilities and limitations of the
artificial mind.

The computability of thought will be discussed on from the perspective
of theoretical computer science, by introducing Gödel’s theorem and from
the point of view of philosophy by introducting John Searle’s ‘Chinese Room’
thought-experiment (section 4.1). Can thought, consciousness and the mind
be regarded as algorithmic? What are the implications if thought is non-
computable? Finally, I will bring forward some ideas from Alastair Channon
(section 4.2). He argues for using an alternative to the traditional fitness
function in order to achieve intelligence.

4.1 The computability of thought

I propose to consider the question,
“Can Machines Think?”
Alan Mathison Turing

4.1.1 Intelligence and thought

There is an important difference between acting intelligently, and being in-
telligent. An agent acting intelligently can rely on execution of a prescribed
or predetermined repertoire, similar to the ‘seemingly intelligent’ instincts of
Goldstein and Godoy’s evolved virtual creatures. Actually being intelligent
requires a level of understanding originating from thought. In this thesis,
we’ve identified algorithmic methods that may contribute to the emergence
of intelligence. While some rudimentary intelligence (or intelligent instincts)

28
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appears to arise, concepts such as ‘thought’ introduces a range of deep philo-
sophical questions.

4.1.2 The Turing test and intelligence

For the assessment of intelligence Alan Turing has devised a formal test
which is now widely known as the Turing Test (for a short explanation see
Appendix A). In short: “It is proposed that a machine may be deemed in-
telligent, if it can act in such a manner that a human cannot distinguish
the machine from another human merely by asking questions via a me-
chanical link.” [Abe98] The ‘intelligent machine’ hypothesis initially gained
momentum by the increase of knowledge on the biological brain. The neu-
robiological processes were first thought to be similar to or identical to the
information processes of a computer, since the neuronal function resembled
that of a logic gate, so a computer made of logic gates was allegedly capable
of simulating an intelligent mind.

4.1.3 Formal proof and Gödel’s theorem

Is the mind a product of logic gates? Investigating these deep questions
entailed formalization of some key concepts. Concrete mathematics provided
a foundation to this philosophical discussion, but also provide insights into
potentially fundamental constraints.

There is an tough debate around the generation of proof of proposi-
tions. In some cases, an algorithmic machines seems uncapable of solving
something that a human can.

In order to unequivocally be able to decide the truth of any proposi-
tion, Hilbert created the challenge of once and for all creating a sound and
consistent formal approach. If successful, anything that was provable would
be computable. Instead, the converse was proved by Kurt Gödel1. His in-
completeness theorem showed that in any language expressive enough to
describe the properties of the natural numbers, there are true statements
that are undecidable: their truth cannot be established by any algorithm.
Importantly, it is not a shortcoming of any particular formal system, but
rather a property inherent in all formal systems [Haz02, on undecidability].

Many ‘procedural’ mechanist operations, such as multiplying numbers,
can be executed by a computer faster, more precisely and more efficiently.
Gödel’s first and second theorem tell us that there is a thing that no algorith-
mic machine can do everything that the human mind is capable of2. Gödel
did not deprive scientists of all hope to create an artificial mind, but he did

1Sometimes called “father of theoretical computer science”. Source:
http://en.wikipedia.org/wiki/Timeline of artificial intelligence

2“[W]e can see that the Gödelian formula is true: any rational being could follow
Gödel’s argument, and convince himself that the Gödelian formula, although unprovable-
in-the-system, was nonetheless – in fact, for that very reason – true.” [Luc63]
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point out the fundamental constraints of doing it in through mechanist or
algorithmic methodology. This leads some to believe quantum mechanics
may play an important role [Pen90, Ham03]. By formalizing what could not
be done, Gödel had also demarcated what would be computable algorithmi-
cally. His work on self-referential formulae are a basis of a class of general
problem solvers, later coined “Gödel machines” by Jürgen Schmidhuber.
The generality of this problem-solving is an important aspect of general
fluid intelligence and Gödel machines fare well in this respect. But since
they are not biologically inspired we will not treat them more extensively.

Gödel machines or universal proof searchers can be digitally executed
much faster than a human mind could perform the same operations. Schmid-
huber claims [Sch06] that his Gödel machines execute O()-optimal, and can
solve any solvable problem. But they are not exempt of Gödel’s fundamental
limitation [Sch06, p. 5].

Gödel’s proof is not really debated, but the controversy about the many
interpretations of Gödel’s theorems shows that no view is conclusive agreed
upon. Perhaps practical evidence can be gathered by evolving intelligence
via biological metaphors.

4.1.4 John Searle’s Chinese room experiment

John Searle disputed the notion that the brain is a computer at the funda-
mental level. He proposed the Chinese Room thought experiment. In short,
it is a closed room with a person in it that knows no Chinese. He receives a
message which he considers non-informational ‘data’, but he applies instruc-
tions that are provided on cards in the room. The instructions allow him to
generate an answer that appears to come from someone that understands
Chinese. Still, the man is not consciously aware of what is being discussed.
While the man, the room nor the cards can be said to be ‘aware’ of it, there
is no awareness in play. Similarly, an algorithmic machine would never be
aware, or ‘understand’ what it processes. [Sea80]

4.2 Open ended evolution

“[E]volution should be free to explore the possibilities without
the burden of human “guidance”.”

Alastair Channon [Cha96]

4.2.1 Limitations of supervised learning

Evolutionary algorithms allow us to evolve a system to achieve a selected
goal, without explicitly stating how to reach it. Specifying what to evolve
towards, indirectly by specifying the fitness function, is an example of super-
vised learning. This capability is very appealing, but not without problems
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[KLM96]. The fundamental problem of supervised learning used in an at-
tempt to evolve complex behaviors, is that it is limited by the insight and
creativity of the supervisor. A practical problem is that it intensively re-
quires human involvement.

The situation is similar to programming a system to react intelligently.
But then it is actually the programmer’s intelligence that the system ex-
hibits, and not its own. The extent of intelligent behavior is limited by
the intelligence of the programmer. Many case based reasoning systems
and knowledge-bases have been created, however most can only answer very
narrow and specific questions. Common-sense, which appears in natural
intelligence, is hard to recreate [Min06, Ch. 6]. Perhaps slowly, progress
is made in reasoning with incomplete, inconsistent, imprecise and/or un-
certain qualitative data [DP96, LS04]. As we have learned in section 3.3.2
(page 27), intelligence has a general aspect to it. And when it is entirely
pre-programmed, it is more aptly called an instinctive than intelligent.

4.2.2 Evolutionary emergence

So far, we have been unable to exactly specify what intelligence is. In
order to achieve emergence3 of intelligence, Alastair Channon argues for
the withdrawal of the traditional ‘fitness function’ based Genetic Algorithm
(see figure 4.1a). We are unable to determine such a function that produces
intelligence. In ‘The Evolutionary Emergence route to Artificial Intelligence’
[Cha96] Channon outlines evolution of a virtual world in which co-existence,
interactions of species, acts as the selective force (see figure 4.1b). In such
a world we can leave the direction of evolution open.

Figure 4.1: (a) Optimization (b) Co-evolution. Adapted from [Cha96].

His view is shared with some others, including Thomas Ray. Succinctly
put, this is what happens in the Tierran world: “[O]nce the memory is filled
with creatures, the creatures themselves become a prominent feature of the
environment. Now evolution also discovers ways for creatures to exploit one
another, and to defend against such exploitation.” [Ray94, p. 245]

3Very simply put, with emergence more comes out of it than is programmed into it.
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Channon concludes that the ‘Selection’ principle of Darwin’s theory is
often misinterpreted and overemphasized. Reminding us that the theory is
one of local change and adaptation, not of optimization along an absolute
scale of fitness. ‘Selection’ is a mere abstraction of probability of inheritance
of any property.



Chapter 5

Conclusions

Nature has evolved an abundance of valuable and inspirational examples for
us. It has even given birth to intelligent species. The hard-to-grasp concept
of intelligence is valuable to us and deserves further exploration. Abili-
ties such as abstraction, learning and dealing with novelty are important to
intelligence. The brain processes underlying intelligence are still little under-
stood [Got97, p. 14]. Luckily, complex and often complicated phenomena
are found to have underlying principles that are not very complicated by
themselves. In this thesis, (1) the principles for this evolutionary process
were clarified and (2) evaluated for artificially application. (3) Finally we
address whether intelligence can be said to emerge from the artificial sys-
tems.

Ad 1) General principles thought to be essential are evolution, evolvable
structures (substrates) and interaction with a rich and challenging environ-
ment. Specifically, neuronal structures in the form of a brain have been
essential to natural evolution of intelligence. The subsystems of the brain
are modularized, but still highly coupled (semi-autonomous nuclei).

Ad 2) Both neuronal structures and evolution have been implemented
artificially and have been combined, referred to as Artificial Neural Networks
(ANNs) and Evolutionary Algorithms (EAs). As in biology, evolutionary
and neuronal-inspired models are a strong combination.

Two experimental implementations are discussed and related to the the-
ory. Experimenting with the evolution of shape (morphology) and control
structure of virtual creatures results in some interesting observations and
illustrates the problems one might encounter when designing selection func-
tions. The Babybot experiment is quite unique as it takes a development
approach to robotics, even while development is crucial for humans and
since human like behavior is the premise of AI. In contrast with Goldstein
and Godoy’s creatures, the Babybot adds an interaction which is important

33
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to more complex species, and essential to emergence of qualities such as
intelligence: development.

Implementation challenges and issues are discussed, scaling and intercon-
nection problems. Possible solutions are use of FPGA, aVLSI, neuromorphic
engineering, optic-holographic and molecular computing devices.

General problem solving abilities are important to achieving artificial
intelligence.

Ad 3) Do the implementations have what is needed for intelligence to
emerge? Will intelligence eventually arise? A theoretical computer science
perspective and the view of Alastair Channon are presented.

Gödel’s incompleteness theorem and Searle’s ‘Chinese room’ experiment
are introduced. Channon argues that since we’re unable to specify precisely
what intelligence is, we should not expect it to emerge when using the fitness
function in the traditional sense. Instead, Channon and others propose a
co-evolution based approach.

Due to the complex nature of the topic, I must apologize to have pursued
an approach often called eclectic1. Hopefully I have done this well.

1Selecting; choosing (what is true or excellent in doctrines, opinions, etc.) from various
sources or systems; as, an eclectic philosopher.
Source: Webster’s Revised Unabridged Dictionary (1913)



Appendix A

The Turing test

For the assessment of intelligence Alan Turing has devised a formal test
which is now widely known as the Turing Test [Tur50]. This test was pro-
posed as a supplement to the philosophically charged question “can machines
think?”, because that appeared to be very hard to answer.

A.1 Design testing procedure

It is based on an imitation game in which a man (A) a woman (B) and an
examiner1 (C) communicate via (typewritten) text messages. The objective
of the examiner is to decide which is which by constructing smart questions.
A computer is supposed to take the place of the man (A). The objective of
(A) and (B) is to convince the examiner that it/she is the human person.
According to the proposal the computer can be ascribed intelligence when
it succeeds in convincing the examiner that it is the human.

Because of some objections as to the relevance of this question, you often
find the additional requirements that: First, (C) should be given adequate
time. Also (B) should be well capable of expressing herself, since someone
can be intelligent without being able to express this well enough over a ‘chat
session’.

A.2 Relevance and objections

Alan Turing believed that some day a machine would be able to pass the
Turing test (repeatedly to rule out luck or flaws of the interrogator or wit-
ness). It must be noted that AI is useful regardless of failing on this test.
Paradoxically, it is currently also beneficial that some ‘hard AI problem’ are
currently unsolved. It allows for alleviating automated abuse2.

1Originally called the interrogator.
2Luis von Ahn has formalized the CAPTCHA, “Completely Automated Public Turing

test to tell Computers and Humans Apart”, which is in use for preventing unwanted

I



APPENDIX A. THE TURING TEST II

In advance, along with the proposal, Turing has addressed several ob-
jections that people may have:

• Theological objection: “God has endowed only humans with the gift
of a soul and to be able to think.”. Turing replies that God could
create such a machine if He wishes so.

• ’Heads in the Sand’ Objection: ’The consequences of machines think-
ing would be too dreadful. Let us hope and believe that they cannot
do so.’.

• Mathematical objection: See below and the computability of thought
(section 4.1). Still a topic of debate.

• Lady Lovelace’s Objection: “[this machine] can do whatever we know
how to order it to perform”. Turing argues that we may one day know
how to make it perform well enough to pass his test.

• Argument from Continuity in the Nervous System. See [Tur50]

• Informality of Behavior argument. [Ibid.]

• The Argument from Extra-Sensory Perception. [Ibid.]

• Consciousness. Still a topic of debate. Also by Penrose [Pen90, Pen96]
and [Ibid.]

• Arguments from Various Disabilities. [Ibid.]

The objection of Penrose [Pen90] is mostly based on Searle’s ‘Chinese
room’ argument and Gödel’s mathematical argument. Turing defends his
opinion, but inconclusively: “Those who hold to the mathematical argument
would, I think, mostly be willing to accept the imitation game as a basis for
discussion.”.

The test assesses AI in the category of “human intelligence” (see table
1.1 in section 1.3.2). It is not so clear with the ‘thinks like’ / ‘acts like’
classification. When the machine acts like a human and if it passes the test
there would be no way to tell to what degree it thinks like a human.

So far, the test has not been passed when all requirements were applied.
This illustrates the difficulty of solving ‘hard AI problems’. It appears that
Alan Turing realized this, he concluded his proposal as follows.

“We can only see a short distance ahead, but we can see plenty there that
needs to be done.”

Perhaps one day, when plenty of work is finished, the machine would
succeed. And when it does, what will the next challenge be? (see figure
A.1)

automatic usage of resources (e.g. subscription to e-mail services to be able to send
SPAM).
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Figure A.1: Turing Test 2.0. Courtesy of xkcd.com (CC ShareAlike license)
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